A Total Degree Splitting Theorem and a Jump Inversion Splitting Theorem
نویسنده
چکیده
We propose a meta-theorem from which some splitting theorem for total e-degrees can be derived.
منابع مشابه
Splitting and Jump Inversion in the Turing Degrees
It is shown that for any computably enumerable degree a 6= 0, any degree c 6= 0, and any Turing degree s, if s ≥ 0, and c.e. in a, then there exists a c.e. degree x with the following properties, (1) x < a, c 6≤ x, (2) a is splittable over x, and (3) x = s. This implies that the Sacks’ splitting theorem and the Sacks’ jump theorem can be uniformly combined. A corollary is that there is no atomi...
متن کاملA Jump Inversion Theorem for the Semilattices of Sigma-degrees
We prove an analogue of the jump inversion theorem for the semilattices of Σ-degrees of structures. As a corollary, we get similar result for the semilattices of degrees of presentability of countable structures.
متن کاملA non-splitting theorem in the enumeration degrees
We complete a study of the splitting/non-splitting properties of the enumeration degrees below 0′e by proving an analog of Harrington’s non-splitting theorem for the Σ2 enumeration degrees. We show how non-splitting techniques known from the study of the c.e. Turing degrees can be adapted to the enumeration degrees.
متن کاملThe Strongest Nonsplitting Theorem
Sacks [14] showed that every computably enumerable (c.e.) degree ≥ 0 has a c.e. splitting. Hence, relativising, every c.e. degree has a Δ2 splitting above each proper predecessor (by ‘splitting’ we understand ‘nontrivial splitting’). Arslanov [1] showed that 0′ has a d.c.e. splitting above each c.e. a < 0′. On the other hand, Lachlan [9] proved the existence of a c.e. a > 0 which has no c.e. sp...
متن کاملA jump inversion theorem for the enumeration jump
We prove a jump inversion theorem for the enumeration jump and a minimal pair type theorem for the enumeration reducibilty. As an application some results of Selman, Case and Ash are obtained.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005